Meeting - A simple audio teleconfer encing tool

Jack Jansen

(DRAFT third version of 29-Sep-92)

1. Introduction

Meeting is a simple audio teleconferencing tool. It copies audio input from your microphone to the speak-
ers of all other people participating in the meeting.

The idea of this paper is to provide both a description of how meeting works and a list of things | learned
along the way. First the general structure of the program is explained and then the various parts. Each sec-
tion not only describes that part but also algorithms tried and rejected, possible extensions, etc.

2. Program overview

For a full description of how meeting is used I refer to the manual page, meeting(1). The basic idea is that
someone, the initiator, starts a meeting on his workstation. Others can then join that meeting. When some-
one says something the voice data is transmitted to all other parties and played through their speakers. All
participants have a window showing faces, icons or names of all other people in the meeting. The window
also contains a per-user ‘talk’ indicator, which lights up when someone is saying something. You can
‘address’ someone using the mouse, and everyone sees an arrow from you to the person you are address-
ing. It is possible to select an area of the screen that is grabbed and displayed on the screens of other parti-
cipants. Finally, if you have video hardware you can have your face replaced by live video.

3. General structure

Meeting is written in Python [ref: EurOpen], an interpreted object-oriented programming language
developed at CWI. This has a lot of advantages and a few drawbacks. The main drawback is that Python
will always be slower than C. One of the effects of this is that the Sun version of meeting does not work
nearly as well as the SGI version (when comparing SparcStation 1 or 1+ to SGI Indigoes): the Suns are just
too slow.

The advantages of Python are manifold. One is that the whole project took about 10 persondays to com-
plete (up to now, that is:-), and that the first test version was already running after a few hours of program-
ming. An advantage that is derived from this is that Python leads to experimenting. Lots of algorithms have
gone through a few generations: it is easy to replace them so there is no severe time-penalty on trying
something else. Python programs are also small: the code for the SGI version of meeting is about 1500
lines and added support for the Suns is only 350 lines.

Another important feature of Python is the power of the language with respect to inheritance, modularity
and abstract data typing. After the SGI version was finished the Sun version took only about 2 days extra,
even though both the display code and the audio code (including a driver in C) had to be written from
scratch.

From a signal processing or data-flow point of view the structure of meeting is shown in the figure below.

The code of meeting is structured as a main program, meeting.py, containing the main loop and the seman-
tics of the user interface. This main program imports the network code, the user interface module and the
audio handling module. In the last two cases, it tries to import the ‘classy’ SGI interface first, and if that
fails it imports the ‘no-frills’ user interface or the sun audio module. So, in principle a machine with SGI-
compatible audio but X-windows display capability only will be supported without modification. The
mechanism is such that is easy to try more choices for user interface or audio. There are also two flavors of

Silence AGC Transmitter /l/
detector
% Mixer Receiver /|/
i e
|
|
|
|
|
|
1 Receiver %
|
|
|
|
|
}, ,,,,,,, _ _
User interface ‘

and general I
control

Control

connection = | =

networking code, one using Stanford IP multicast and one using normal point-to-point communication.
This choice between these two is static, though.

The user interface classes, window_gl.py and window_x.py, do not share code but have the same interface.

The audio classes audio_sgi.py and audio_sun.py share a bit of code, the silence detection and automatic
gain control, by inheriting the base class audio_silence.py.

In the course of the project three C modules have been written that are dynamically loaded into the running
Python interpreter. These modules should have a wider application than the meeting program (when they
are cleaned up and documented), but they are described here for completeness’ sake.

Audioopmodule.c handles audio fragments and can do operations like removing a bias, computing the aver-
age or absolute maximum and converting linear to ulaw encoding and vice versa.

Sunaudiodevmodule.c defines a class that allows you to read and write samples to the sun audio device.
Imgfilemodule.c handles SGI imglib images: reading, scaling, etc.

4. Network and protocol handling.

Meeting uses UDP for voice data and TCP for connection management. An earlier version used only UDP,
but it was found that loosing connectivity information (due to packet loss or host crash) was bothersome.
When some people in the meeting could not be seen by some others communication got very messy. UDP
is still used for voice data and some other non-critical tasks, where packet loss is not such a big problem.
[XXXX Measure packet 10ss)].

Each instantiation of meeting has a TCP connection to the initiator, a UDP socket on which to transmit
voice and, for each remote machine, an input socket on which voice packets from other machines are
received. The socket structure is sketched in the next figure below.

If meeting is started in initiator mode, it listens for TCP connects on a fixed port. When people join the ini-
tiator picks a free port and sends the new member this port and a list of all other people in the meeting
(their usernames, hostnames and portnumbers). The new member then opens all relevant sockets, initializes
the user interface and sends out a control message (over the TCP connection) to all members to tell that it
has joined the meeting. The initiator retransmits all incoming TCP messages over all its other TCP connec-
tions.

Whenever a member has voice data to transmit it addresses it to its own portnumber on all member hosts.

-
Control info ! FTTTTTTTTToToTomoooooees a !
I I
I I I I
I I I I
| I I |
I I I I
| | ! |
I I +
Voice data \}/ \}/ \}/ Q/ \}/ Q/
Xmit Recv | Recv Xmit | Recv | Recv Xmit | Recv | Recv
UDP port: TC<,P,,>TCP 42001 | 42002| 42003 TcP 42002| 42001| 42003 Tce 42003 | 42001| 42002

The multicast network module does this by sending a single multicast message, the unicast module by
enumerating over all the member hosts. This scheme has a few advantages over the more obvious scheme
of addressing the messages to the portnumber corresponding to the host you are sending to (besides the fact
that it is the only reasonable implementation for the multicast code), which was tried in a previous version
(and which needed only a single socket in each instantiation of meeting). The main advantage is that the
kernel demultiplexes all the UDP ‘streams’ (which works because the kernel does a little buffering of UDP
packets). This greatly simplifies the voice multiplexing code described below.

Video is also transmitted in the same way and using the same ports. This might not be such a good solu-
tion, since you might well want to use different policies for audio and video.

When a user leaves the meeting the TCP connection is simply closed. The initiator detects this and sends a
TCP message to all other participants. When the initiator closes the meeting it closes all TCP connections
and all parties detect this and interpret is as the end of the meeting.

The control and data packets are distinguished by their first byte, which indicates the type of the message:
‘D’ for data, ‘Q’ for signoff, etc. Signon and signoff messages are sent over the control connection but
some control messages like the ‘gaze’ message (telling that the sender is ‘addressing’ someone, and who)
go through the normal data stream. All data (except voice data) is in ASCII. Actually, the data transmitted
are the normal ASCII representation of Python data structures, so parsing is trivial. The drawback, how-
ever, is that illegal data will undoubtedly crash the program. Messages that go over the control connection
are preceded by their length, because TCP does not preserve message boundaries, and the message boun-
daries are needed to be able to parse the messages reasonably.

An important issue is the optimal packet size. Small packets have the advantage that they allow for shorter
latency, but they also incur a bigger overhead per sample (since most of the overhead is per-packet, not
per-sample). There is also the maximum packet size supported by the underlying network layers to take
into account. UDP supports packets up to 64K in size, but these get fragmented when transferred over eth-
ernet, which supports only packets up to 1500 bytes. Also, experiments have shown that fragmented multi-
cast messages are likely to get lost when traversing multiple networks.

We have picked a packet size of 680 samples. The rationale behind this is that the latency is low enough
(85 ms), and that it should always fit in a single ethernet packet: 680 samples is 1360 bytes, leaving 140
bytes for lower layer headers before the packet becomes too big for ethernet. No experiments have been
done yet to see whether bigger or smaller packets work better.

Data packets have a sequence number to aid detection of lost packets, duplicates and out-of-order packets.
Each instantiation of the listener (there is an instantiation of the listener for each other member host) has a
small incoming packet queue. Whenever the ‘readpkt()’ method is called it reads all available packets from
the socket and sorts them into the queue. It then discards all late packets (packets with a sequence number
less or equal than the sequence number of the last packet returned from readpkt) and throws away the first
few packets if the queue has become too long (because a long queue means long latency, see the section on
audio handling for details). If the sequence number received differs wildly from the one expected all pack-
ets are dropped and the protocol code resynchronises. If, after all these actions, the queue is empty an
empty packet is returned, otherwise the first packet in the queue is returned.

This relatively complicated handling of incoming packets is the result of lots of experimentation. It was
discovered that packets do get lost, and do arrive out of order. A previous, more simple-minded algorithm
that did not try to insert packets into the queue but just dropped them when they were out of order did not

-4-

perform nearly as well. The current algorithm tries to keep the queue length between two fixed values, 2
and 5 currently, which seems to lead to both reasonable maximum latency and minimum ‘stutter’ because
of packets arriving a little late.

A final feature of the networking code is the possibility to code audio data in 4 bit Intel-DVI ADPCM for-
mat. This results in packets of only 340 bytes (excluding header) in stead of packets of 1360 bytes. The
audio quality is as good not as that of non-compressed audio, however. A previous ADPCM coder, which
used 3-bit codes, did exhibit a significant loss in quality so was replaced by this 4-bit coder. Hopefully
ADPCM encoding will allow us to hold wide-area meetings (since the used bandwith is only 32Kbit in
stead of 128Kbit) but this has not been tested yet. Experiments have showed that a huffman coder after the
ADPCM coder would reduce the average bitlength of a sample to 3.2 to 3.5 bits, so it would reduce the
bandwidth requirements with another 15%. Finally, we could try using one of the more modern coders like
CELP or LPC, which are rumoured to transmit intellegible speech using as little as 5Kbits/second
bandwidth.

4.1. Problemsand possible extensions.

Protocol freaks will have noticed that the subscription protocol has a race condition when two people join
at approximately the same time. Since subscription is a two-phase protocol (first the connection is made
and a socket number obtained and then the new member advertises its existence to all others) there is a
window in which a member is partially subscribed. This could be fixed by not allowing new subscriptions
while another one is still in progress.

There is a cheap extension through which encryption could be done, but I am not sure how strong the
encryption is. Given an integer function F(K,S) we could send K, the key, to all members in the initial sig-
non message. This initial message would have to be encrypted using a standard encryption method, prob-
ably some public key encryption scheme. For each message (with sequence number Sand length L) we
would then swap the first F(K,S) mod L bytes and the last L-(F(K,S) mod L) bytes. The resulting message is
easily decoded by the receiving side but probably totally unintelligible by outsiders. ADPCM coding
strengthens the encryption, and the method could also be made stronger by using multiple cutpoints. As |
said, though, | am not sure how easy it is to find F(K,S), maybe using FFTs or something.

5. Audio handling.

One of the main issues in a program of this sort is how to make sure that the timing of the audio data
streams is within reasonable bounds. The latency should be low, because delays of over, say, one second
seriously hinder conversation. It should not be too low, however, because there are lots of variable delays
due to the network, scheduling, etc and striving for minimal delay will inevitably cause stutter in the audio
output, which is also very bothersome. A related problem is that of clocks that run at slightly different
speeds: this will either lead to frequent stutter in case of a slow transmitter or to long delays in case of a
fast transmitter. The last issue involved with timing, that of packet size, has been covered in the previous
chapter.

The latency issue is taken into account through the whole program by attempting to keep queuelengths
within specified minimum and maximum bounds whenever sound data is being queued. We attempt to
keep approximately 0.1-0.3 seconds of sound in the network input queue and at most 0.3 seconds in both
the audio input and output queues. There is little use in trying to maintain a minimum audio input
queuelength since audio reads are blocking and maintaining a minimum output queuelength by inserting
fillers whenever the queuelength was too low has been tried but did not help understandability.

The timing issue has been solved by using the timing of the audio input device as a master clock. Data is
read from the microphone in pieces of one packet with a blocking call. This packet is then processed and
optionally transmitted. After that at most one packet is taken from each network input queue, all these
packets combined and played through the speaker. The minimum network queue length above is not
actively maintained by the program but happens more-or-less automatically: whenever a random delay in
the network causes two packets from one source to arrive in one “clock tick’ the second will remain in the
input queue and help to maintain continuous flow of output data.

A subject into which quite a bit of work has been put is that of audio processing on the input side. Silence

-5-

suppression is definitely needed for an application like this, to cut down on noise levels and network
bandwidth. The first simple minded algorithm used a fixed threshold to decide whether a packet read from
the microphone contained speech or not: whenever the maximum of the amplitudes was over the threshold
the packet was transmitted. This did not work very well: the optimal value of the threshold differed per
machine and tended to vary over time (making continuous twiddling of the input volume by the user neces-
sary). It was then discovered that the SGI machines return sound with a DC bias added to it, and this bias is
different on every machine. This bias was measured by reading a single packet with the input gain set to
zero and calculating the average amplitude over that packet. This bias was then subtracted from all data
read subsequently. Incidentally, the Suns have no such bias, either because it is removed in hardware or in
the kernel or because the use of U-LAW coding makes the bias disappear.

With this debiasing silence suppression worked better, but still not good enough. After some questions on
the net and some browsing | came across [ref], which describes a silence suppression algorithm that is
based on both amplitude and number of zero crossings, and is adaptive over time. An initial experiment
showed that the number of zero crossings provided no information whatsoever in our case, contrary to what
the article said. This might be due to the noisiness of our signals or due to the fact that we work with frag-
ments of approximately 800 samples and the authors of the paper with fragments of 80 samples, | am not
sure. The rest of the article was applicable, though, and led to the current silence suppression algorithm.

The algorithm works with a variable threshold and uses a feedback loop to update this threshold. Actually,
there are two thresholds: a silence-to-speech threshold and a speech-to-silence threshold, which is 75%
lower. Also, if the previous packets were decided to be speech the next 3 packets that fail the (low) thres-
hold are considered to be speech anyway. These two measures manage to keep the microphone open dur-
ing inter-word gaps and most inter-sentence gaps. This is a good thing, as it improves understandability.

The feedback loop works by maintaining a running average of the average amplitude in all packets that are
decided to be silent. By initializing the threshold to some high value the algorithm will adapt itself to the
noise level in the room in about 1-2 seconds: initially every packet will be judged silent, and this will bring
the threshold down very fast. This feedback loop does not react to ‘bad news’, however: when the level of
the background noise rises all packets will exceed the threshold and be judged speech. Therefore, they will
not update the threshold and this situation continues to exist. To handle this problem the threshold is also
incremented by one for each packet. This will lead to a single speech packet being dropped now and again,
but this does not seem to be a problem (probably because the packet being dropped will usually be an
inter-sentence-gap packet).

It was noted early in the project that an automatic gain control would also be very handy, as the signal lev-
els are fairly low and people tend to move their head around while speaking, etc. An initial experiment with
a combined AGC/silence detector gave disappointing results, so a separate AGC was added. The AGC
works per-packet and is fairly standard: it tries to keep amplitudes between 8% and 50% of the dynamic
range, and increases or decreases amplification in steps of 10% whenever the signal is outside this range.
This amplification is also clamped whenever the signal threatens to go over 90% of the dynamic range by
immediately lowering it. This forestalls audio feedback, and shouting matches besides:-).

5.1. Audio - Echo suppression

After using meeting for some time it was noted that some form of echo suppression was needed. Especially
if you ran meeting with headphones on and others ran with a speaker you would continually hear every-
thing you said back about a second later. This is rather bothersome.

Some experiments were done on echo cancellation: we send a sweeping tone to the speaker and wait until
it comes back over the microphone. We then calculate the delay (in audio-clock ticks) and the attenuation.
We can use these numbers to try and cancel our outgoing speech from what comes back in over the micro-
phone. Although not entirely unsatisfactory (the echo cancellation is very good for another application, the
computer telephone interface) the results were not good enough for meeting. Due to room reflections the
signal was rather fuzzy when it returned, and it is not possible to remove it. A better echo cancellator
(probably using filterbanks and measuring room acoustics per audio band) might work but has not been
tried due to the amount of work needed.

Another try was to shut off the microphone when the speaker was active. This did not work, since there is

-6-

no way to break in to a conversation when one of the other parties is talking continuously. The next algo-
rithm was the shut off the speaker when the microphone was active (this is more-or-less what the phone
companies do on transatlantic links). This was not satisfactory either, since coughs and gusts of wind
caused you to miss half sentences.

The current scheme to forestall echo is a supression approach consisting of two measures. First, whenever
the speaker is active we increase the treshold by a factor 4. The effect of this is that a burst of sound from
the speaker is not as likely to trigger the silence suppressor, which would cause the feedback. The second
measure is to lower the output volume when we are transmitting audio. Experiments seem to indicate that
these two measures are good enough to suppress echo. An occasional single packet will get back to the
speaker, but this is not too much of a problem. Lowering the output volume is also a lot better than com-
pletely muting it.

5.2. Audio - odds and ends

The silence suppressor usually works quite well, but it will occasionally not transmit the first sylabbe of a
sentence. This could be fixed by remembering a packet when it is decided to be silent, and transmitting that
packet after all if the next packet is judged speech. This would add a little extra latency but it would help
the network queuelength control. See the previous section for the tradeoffs involved.

The authors of [ref] state that instead of discarding silence it is a better idea to replace it by prerecorded
‘background noise’. It could be that this is because of their application (people listening to prerecorded and
preprocessed pieces of text through a headphone), but comments from users (especially users with head-
phones) seem to indicate that it would apply to us as well. We could transmit a packet of background noise
to all parties during startup, to be used as our signal whenever we are silent. Some processing on the back-
ground noise will be necessary, though, otherwise you will hear annoying clicks 12 times per second.

6. User Interface.

The user interface is very simple, and does a few things to try and overcome the lack of visual contact.
Note that some of the things said in this paragraph are not true for the stdwin-based user interface, which
has less functionality than the SGI interface. The differences will be explained later in this section.

The user is presented with a display showing the faces of all other participants in the meeting. Under each
face is a ‘talk indicator’ that lights up whenever that person is talking. You can do the equivalent of
directly addressing someone in a real meeting by pressing the mouse over that persons face. This will result
in everyone in the meeting seeing an arrow originating somewhere at your forehead and ending at the chin
of the person you are looking at. No serious tests have been done yet, but this paradigm appears to work
fairly reasonably. Initially it was enough to move the mouse over someone to address them, but this caused
lots of arrows to appear by accident. Specific addressing seems to be uncommon enough that it is no prob-
lem that you have to press the mouse.

On the SGI machines, the window is automatically resized whenever people join or leave the meeting. The
user can also resize the window, and this will result in all images being scaled to fit the new window (so
you can decide how much screen space to use for the meeting window).

Things like lighting the indicator whenever sound data is detected from a certain person, detecting
‘address’ events and displaying them, etc. are all done through methods of the various objects that are
inherited or assigned in higher level objects, again showing the strength of the Python object model.

The sun interface is a lot less nifty, by contrast. It is programmed using stdwin [ref: CWI report CS-R8817]
(so this should make it portable to things like Ataris or Macintoshes as well, unlike the audio interface).
Because stdwin currently has no easy way of importing pictures in one form or another the faces are
replaced by fixed smileys, with the persons name affixed under it. Another difference is that the auto-
resize-on-join does not work: the users have to resize the window themselves. A final difference is that you
do have to click on someones’ face to address them.

6.1. Control pane
To be written.

6.2. Work to bedone on the user interface

There are a few minor improvements that could be made, like using some sort of real images in the stdwin
version (this is being worked on).

The current program places the people in the window in a more-or-less random order, which is different for
everyone as well. User feedback is needed to decide whether this is acceptable in all situations (it appears
to be, so far), or whether we should simulate a ‘round table’. Some of the ideas of the WITIlab group at TU
Delft [ref?] could be taken into account here.

Meeting currently takes an anarchist standpoint: whoever wants to speak can do so. It might be a good idea,
especially for bigger meetings, to add a ‘permission-to-talk’ system such as is used in real meeting rooms.
Whenever you have something to say you request permission by clicking your talk indicator, and the chair-
man grants permission (or takes it away again) by also clicking your indicator light. A four-colour indicator
would convey the state information (quiet, quiet but asking for permission to speak, quiet with permission
to speak and speaking) to the users. There seems to be work done in the area of systems ensuring a fair
share in speech time to all participants, but this looks like overkill (from my experiences with meetings, at
least).

Some other possible extensions are the possibility to talk to people in private (maybe even extended to a
concept of talking to a subset of the people in the meeting) and a system to invite people to join a meeting.
If a reasonable paradigm can be devised this might even lead to a system resembling Internet Relay Chat,
but voice based: lots of people have a tiny chat window and are subscribed to numerous interest groups. As
soon as someone has to say something it gets transmitted to all the people subscribed to the relevant group.
This could lead to all sorts of interesting usage, like peer-help with computer problems (remember the ter-
minal rooms of the seventies, where you would first ask the other people around for a solution before dig-
ging up a manual?) and other things. This would, however, require the subscription protocol to be reverted
to a UDP based distributed protocol in stead of the current centralised TCP based protocol. The protocol
used in vat [ref] might provide some clues.

Finally, a connection to the real phone system would be nice. The only thing needed for this would be one
or more daemons somewhere on the network that are connected to the normal phone system. Combined
with a database, meeting could show external peoples’ faces, dial the correct number, presenting a record-
ing to the answering party asking whether or not they want to be in the meeting, etc. The hardware has
been built, but the software is not in place yet.

